The Open circuit test, or "no-load test", is one of the methods used in electrical engineering to determine the no load impedance in the excitation branch of a real transformer.
Contents |
The secondary of the transformer is left open-circuited. A wattmeter is connected to the primary. An ammeter is connected in series with the primary winding. A voltmeter is optional since the applied voltage is same as the voltmeter reading. Rated voltage is applied at primary.
If the applied voltage is normal voltage then normal flux will be set up. As the Iron loss is a function of applied voltage, normal iron loss will occur. Hence the iron loss is maximum at rated voltage. This maximum iron loss is measured using the wattmeter. Since the impedance of the series winding of the transformer is very small compared to that of the excitation branch, all of the input voltage is dropped across the excitation branch. Thus the wattmeter measures only the iron loss.
Since the secondary of the transformer is open, the primary draws only no load current. This no load current is negligible. As the copper losses depend on current they can be neglected.
Current, voltage and power are measured at the primary winding to ascertain the admittance and power factor angle.
Another method of determining the series impedance of a real transformer is the short circuit test.
The current is very small.
If is the wattmeter reading then,
The above equation can be rewritten as,
Thus,
By using the above equations, and can be calculated as,
Thus,
or
The admittance is the inverse of impedance. Therefore,
The conductance can be calculated as,
Hence the susceptance,
or
Here,
is the wattmeter reading
is the applied rated voltage
is the no load current
is the magnetizing component of no load current
is the core loss component of no load current
is the exciting impedance
is the exciting admittance